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ABSTRACT – The thermal limitations of induction motors are 
specified by thermal limit curves that are plots of the limiting 
temperature of the rotor and stator in units of I2t. This paper 
discusses the thermal protection provided by rotor and stator 
thermal models defined by the thermal limit curves and sup-
porting motor data. The thermal model is the time-discrete form 
of the differential equation for temperature rise due to current 
and is derived from fundamental principles as shown in the 
Appendix. The rotor model derives the slip-dependent I2r watts 
using voltage and current that permit the safe starting of high-
inertia drive motors. The performance of the models is shown 
in constant and cyclic load tests. 

Index Terms: Motor Protection, Thermal Protection, Thermal 
Models. 

I.  INTRODUCTION 

Protection engineers are quite familiar with the coordination 
of overcurrent relays for fault protection. Induction motors are 
thermally limited and also require thermal protection. This pa-
per discusses thermal models that are used to determine and 
monitor motor temperature to prevent overheating during start-
ing and running conditions. The thermal model is the time-
discrete form of the differential equation for temperature rise 
due to current in a conductor. The model is derived from fun-
damental principles shown in the Appendix. The model relies 
on parameters that are defined by motor data. The derivation 
shows that the model can be visualized as an electric analog 
circuit and that the temperature can be expressed in units of 
I2t. Manufacturers specify the thermal limitation using thermal 
limit curves that are I2t plots of the limiting temperature. The 
curves for a 7000-hp, 900-rpm motor are shown in Fig. 1.  

The curves represent two initial conditions: the machine ini-
tially at ambient temperature and the machine initially at oper-
ating temperature. 

 
Fig. 1 7000-hp, 900-rpm Motor Thermal Limit Curves 

The thermal limit curves show only two of the possible condi-
tions of a first-order thermal process, where a balance of heat 
storage and heat loss determine temperature. 

It is apparent that the simple dynamics of an overcurrent re-
lay cannot provide adequate thermal protection for a motor for 
all operating conditions. Consequently, we will analyze the 
ability of the microprocessor-based thermal models to provide 
optimum thermal protection. 

To do this, we will compare the performance of a thermal 
model that ignores heat loss with one that considers heat loss 
when applied to the same motor.  

II.  ADIABATIC PRINCIPLE 

The paper by Lance Grainger and Michael C. McDonald, 
“Increasing Refinery Production by Using Motor Thermal Ca-
pacity for Protection and Control” [2] shows the derivation of a 
relay thermal model. Here the authors state, “Regardless of 
where the heating occurs, due to its rapidity, the motor can be 
considered an adiabatic system which absorbs energy from 
the equivalent stator current, but does not give off heat. Under 
these idealistic assumptions the temperature of the motor will 
increase as it absorbs energy over time.” 

Then for adiabatic heating: 

 ∫ ∫ ωθ==⋅ cdtiRdtq 2
eq  (1) 
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where: C is the specific heat of the winding 

 ω is the weight of the conductor 
 θ is the temperature of the winding 
 R is the electrical resistance 
 ieq is current adjusted for unbalance 
 q is the heat flow 
From this basic relation: 

 ∫ω
=θ dti

c
R 2

eq
 (2) 

For constant current: 

 ti
c
R 2

eqω
=θ  (3) 

Consequently, the time-current curve for a maximum tem-
perature θmax is a simple I2t relation where k = (θmaxcω/R): 

 2
eqi
k)I(t =  (4) 

The authors state that if current is sampled periodically over 
some interval of time ∆t, then the time to damage the motor 
can be calculated from the following relationship (provided the 
ieq is greater than IFL). 

 
)I(t
t

n1n
∆

+θ=θ +  (5) 

For cooling while the motor is running, ieq < IFL, the decaying 
temperature is: 

 ( ) τ
−

+ ⋅θ−θ+θ=θ
t

FLCnFLC1n e  (6) 

The temperature θn+1 in (5) and TCn+1 in (8) represents the 
rise above normal ambient. Consequently, θFLC and TCFLC are 
zero for a motor at ambient. In the relay, θn+1 is called the 
thermal capacity TCn+1 expressed in percent of the trip value. 
The equation given in the literature is: 

For cooling while the motor is running, ieq < IFL 

 ( ) τ
−

+ ⋅−+=
t

FLCnFLC1n eTCTCTCTC  (7) 

For heating while the motor is running, ieq > IFL: 
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Equation (4) is not really the time-current curve used. If it 
were, 1/t(I) would equal I2/k, and (6) or (8) would be simply the 
integration of the current squared, and any value of current 
greater than zero would eventually produce a trip. 

If (4) is not used, what is the time-current curve? A clue is 
given by the parenthetical phrase “provided ieq is greater than 
IFL” quoted above. The points of the actual time-current curve 
are listed in the relay instruction manual, where 30 points are 
listed for each of 15 curves. Analysis shows that the points are 
an exact fit of the equation:  

 
1I
4.87TMt 2 −

=  (9) 

 

Where: t is the trip time in seconds 
 I is the current in per unit of FLA 
 TM is a time multiplier (integers 1 to 15) 

 
The time-current curve, shown in Fig. 2 for TM = 1, is consis-

tent in that it has no response for current below IFL. However, 
(9) inserted in (5) or (8) as the t(I) implements the dynamics of 
an overcurrent relay rather than that of a thermal model. See 
IEEE C37.112 - 1996, IEEE Standard Inverse-Time Character-
istic Equations for Overcurrent Relays, [3], page 4. 

Consequently, this derivation produced an overcurrent 
model that cannot calculate temperature and will trip for cyclic 
overloads that do not overheat the motor. 

 

 
Fig. 2 Time-Current Curve for Adiabatic Derivation 

III.  THE EQUIVALENT CIRCUIT 
OF THE INDUCTION MOTOR 

The sources of motor heating are the watts loss in the resis-
tance of the rotor and stator winding. The resistances are 
shown in the Steinmetz model of the motor in Fig. 3. RS is the 
resistance of the stator winding. Rr is the resistance of the rotor 
and is slip-dependent and decreases from a high locked-rotor 
value to a low running value at rated speed.  

 
Fig. 3 Steinmetz Motor Equivalent Circuit 

The positive- and negative-sequence rotor resistances are 
given by the linear functions of slip S: 
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 NNM1 RS)RR(R +−=  (10) 

 
 NNM2 R)S2)(RR(R +−−=  (11) 

where: RM is the rotor resistance at locked rotor 
RN is the rotor resistance at rated speed 

 
RM and RN are known quantities defined by locked rotor cur-

rent (IL), torque (LRQ), synchronous ωsyn, and rated speed 
ωrated as follows. 
 

In the Steinmetz model shown in Fig. 3, the I2r watts loss to 
the rotor resistor (1-S)Rr/S is the mechanical power. Also 
power PM divided by the speed ω = 1–S equals torque QM. 
Therefore: 

 
S
RI

S1
1R

S
S1I

S1
PPQ r

2

r
2MM

M =
−

−
=

−
=

ω
=  (13) 

 
Solving for Rr in terms of torque, current, and slip gives: 

 

 S
I

QR 2
M

r =  (14) 

 
For locked rotor S = 1, QM = LRQ  

 

 2
L

Mr I
LRQRR ==  (15) 

 
The S at rated load is SN, Current I = 1 pu, and Torque 

QM = 1 pu  
 NN SR =  (16) 

 
syn

ratedsyn
NR

ω

ω−ω
=  (17) 

 2
L

M I
LRQR =  (18) 

The rotor resistance for any value of slip can be calculated 
using values taken from the plot of current and torque shown in 
Fig. 4. 

 

Fig. 4 Motor Current, Torque, and Rotor R Plotted Versus Slip 

IV.  ROTOR THERMAL MODEL 

Fig. 4 shows the excessively high current drawn until the 
peak torque drives the motor to full speed. A starting current of 
six times rated current and a locked rotor resistance RM of 
three times RN causes the I2t heating of 62x3 =108 times the 
heating of normal rated load current. Consequently, the ex-
treme temperature caused by the high starting current must be 
tolerated for a limited time to allow the motor to start.  

The safe starting time is indicated by the locked rotor curves 
shown by the dashed plot in Fig. 1. The cold locked rotor char-
acteristic specifies the time it takes the staring current to heat 
the rotor to the limiting temperature with the motor initially at 
ambient. The hot locked rotor characteristic specifies the time 
for starting current to heat the rotor to the limiting temperature 
with the motor initially at operating temperature. The limiting 
temperature in units of I2t is: 

 A
2
LL TIU =  (19) 

where: UL is Rotor Temperature Limit 
 IL is Locked Rotor Current in per unit of FLA 
 TA is Safe stall time from ambient 
Since both the hot and cold characteristic represent the 

same limiting temperature, the operating temperature can be 
expressed in terms of the limiting temperature as follows: 

 OO
2
LL UTIU +=  (20) 

 )TT(IU OA
2
LO −=  (21) 

where: UO is the operating temperature in I2t 
 TO is the safe stall time from operating temperature 

 
Fig. 5 shows the first order thermal model that incorporates 

the I2t properties of the rotor thermal limit curves as well as the 
effect of the slip-dependent positive- and negative-sequence 
rotor resistance on the input watts. The I2t value of the operat-
ing temperature is used as the thermal resistance to ensure 
that one per unit input produces the operating temperature. 

  
Fig. 5 Rotor Thermal Model 

The following discrete form of the differential equation of the 
rotor thermal model is processed each sample period to calcu-
late the temperature U: 
 

For I > 2.5 

 1n
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For I <= 2.5 
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where the thermal capacitance CTh = RM/RN and the thermal 
resistance RTh = (IL)2(TA – TO). I1 and I2 are the positive- and 
negative-sequence currents, respectively. Note that the ther-
mal resistance is only considered when the current drops be-
low 2.5 pu, so that the calculation of temperature is adiabatic 
for starting current. At each sample, Un is compared to the trip 
threshold and asserts the trip signal if the limiting temperature 
is exceeded. 

Examples of the temperature U obtained from the rotor 
thermal model are shown in Figs. 6a and 6b. Note that the 
temperature is plotted in per unit of the limiting temperature UL. 
Fig. 6a shows the locked rotor condition where Rr remains at 
its maximum value, and the I2t temperature reaches the trip 
level in locked rotor time. Fig. 6b shows the successful start 
where Rr decreases, and the temperature reaches only 72% of 
the limiting temperature. 

 

Fig. 6a Locked Rotor Trip. At Locked Rotor S=1, Rr = RM 

 

Fig. 6b Motor Starting Current, Motor Torque, Rr, 
and Temperature 

V.  CALCULATING SLIP 

If the thermal model used a fixed rotor resistance RM it would 
produce an I2t rise that overestimates the temperature during 
valid start. This is the cause of premature tripping when start-
ing a high-inertia motor as shown in Fig. 7. The figure shows 

the I2t response of the relay reaching the trip threshold before 
the motor reaches running speed and the starting current sub-
sides. The rotor reaches only 72% of the limiting temperature 
while the I2t relay trips. 

 
Fig. 7 Motor Starting Current With I2t Temperature Response 

To remedy this deficiency, the relay can use the measure-
ment of voltage and current to calculate slip S. The slip can 
then be used to determine the slip-dependent rotor resistance. 
When motor voltage and current are monitored, the apparent 
positive-sequence impedance looking into the motor terminal 
is: 

 
1

1

I
VjXRZ =+=  (24) 

From the Steinmetz equivalent circuit: 
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Expanding the equation: 
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The real part of Z is: 
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Let 
2

m

mr

X
XXA ⎟⎟

⎠

⎞
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⎝

⎛ +
=  (26) 

Using the real part of the motor impedance 

 
SA

RRR r
S ⋅

+=  (27) 

Substitute (10) for Rr in (27) and solve for slip S in terms of 
RM, RN and the measured resistance R. 

 ( ) )RR(RRA
RS

NMS

N

−−−
=  (28) 

The slip is then used in the positive- and negative-sequence 
resistance equations (10) and (11). The resistance of the rotor 
thermal model will then be slip-dependent and produces the 
slip-dependent temperature rise shown in Fig. 8. 

 
Fig. 8 Motor Starting Showing Thermal Model Emulating the 

Rotor Temperature 

VI.  OVERLOAD HEATING 

The overload curves in Fig. 1 show the thermal limit of the 
stator. The curves fit the time-current equation: 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝
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−
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⋅τ= 22

2
0

2

SFI
IIlnt  (29) 

where : τ is the stator thermal time constant 
 I is the stator current pu of FLA 
 I0 is the initial current in pu of FLA 
 SF is the motor service factor 
The overload curves, drawn with solid lines in Fig. 1, are as-

ymptotic to the current equal to the service factor that heats 
the stator to its temperature limit and is taken as the trip 
threshold. The stator thermal time constant can be determined 
by a heat run, where a load current is applied and the rise is 
measured at regular time intervals. The temperature will rise 
exponentially, and the thermal time constant will be the time it 
takes the temperature to reach 63.2% of its final value. In the 
case of the 7000-hp motor, the manufacturer listed the time 
constant τ as 950 seconds.  

 
Fig. 9 Stator Thermal Model 

The stator thermal model is shown in Fig. 9. I2(TA-TO), the 
operating temperature in I2t, is retained as the thermal resis-
tance RTh since 1.0 pu current flowing in the thermal resistance 
produces rated operating temperature. Consequently, the trip 
threshold is SF2 times the operating temperature. The thermal 
capacitance CTh is therefore: 

 
)TT(I

C
OA

2
L

Th −
τ

=  (30) 

The following discrete form of the differential equation of the 
stator thermal model is processed each sample period to cal-
culate the temperature U: 

 ( ) 1n
ThThTh
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VII.  STATOR TIME CONSTANT 

The time-current in (29) gives the time it takes a steady-state 
current to raise the stator temperature to the trip level starting 
from the temperature caused by the previous load current I0. 
Note that position of the overload curve is determined by the 
value of I0 for which the manufacturer chooses to plot the 
curve. In Fig. 1, the initial values were chosen so that the over-
load curves appear to form a continuous curve with the hot and 
cold locked rotor curves. As plotted, these curves appear to 
allow the close coordination of the extremely inverse time-
current overcurrent relay characteristic given by (9). However, 
these curves show only two of the many possible initial condi-
tions. Consequently, the first order thermal model, as imple-
mented in the Appendix, conserves the thermal history and 
provides the continuous real-time calculation of the tempera-
ture.  

The time constant τ is the key parameter of the stator ther-
mal model. When not specified, a reasonable estimate can be 
made as follows. Assume the motor had a previous load of 0.9 
pu current when the motor is started. Where both stator and 
rotor are heating, under a locked rotor condition, we would 
expect the rotor to trip before the stator. To guarantee this 
condition, with locked rotor current, let the stator thermal model 
trip in the average of the hot and cold locked rotor time: 
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For the 7000-hp motor, IL = 6.3, SF = 1.15, TAv = (14+12)/ 
2 = 13 
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In this case, the estimate is within 3% of the actual value.  

VIII.  COMPARING MODEL DYNAMICS 

The adiabatic model is implemented using (7) and (8), where 
the function t(I) is the extremely overcurrent relay characteristic 
of (9). The time multiplier is selected to coordinate the curve 
with the hot locked rotor limit. The curve is: 

 
1I
4.875.4t 2 −

⋅=  (34) 

The coordination with the thermal limit curve characteristic of 
Fig. 1 is shown in Fig. 10.  

In contrast, the settings for the stator and rotor thermal mod-
els are the parameters obtained from the 7000-hp motor data. 
For the stator model, the settings are the thermal time constant 
τ and the service factor SF:  

 τ = 950 Sec.  
 SF = 1.15 
For rotor model: 
 ωsyn = 900 rpm Syn. Speed 
 ωrated = 895 rpm Rated Speed 
 IL = 6.3 pu Locked Rotor Current 
 LRQ = 1.0 pu Locked Rotor Torque 
 TA = 14.0 Sec. Cold Rotor Limit 
 TO = 12.0 Sec. Hot Rotor Limit 

 
The relay monitors voltage and current to determine the motor 
Z and calculates RM and RN. The real part of Z is then used to 
derive slip and calculate the slip-dependent rotor positive- and 
negative-sequence resistance (see Section V). 

 
Fig. 10 Coordination of Overcurrent Relay Model 

With Thermal Limit Curve 

0056.
900

895900R
rated

ratedsyn
N =

−
=

ω

ω−ω
=  

 

025.
3.6
0.1

I
LRQR 22

L
M ===  

With these settings, the stator and thermal models take on 
the dynamic thermal properties of the 7000-hp motor. 

A test of a thermal model is its ability to adequately protect 
the motor from overheating during cyclic overloads. Conse-
quently, in this paper we will describe the results of tests in 
which the adiabatic model and the model considering losses 
were subjected to constant and cyclic overloads. The results 
are plotted in Figs. 11, 12, and 13. 

 
Fig. 11 Warm Up With a 0.94 pu Load Current 
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Fig. 12 Stator Model Temperature Response to Cyclic Load 

 
Fig. 13 Overcurrent Model Response to a Cyclic Load 

In Fig. 11, the temperature calculated by the thermal model 
rises exponentially to a steady state value. The load current is 
below the pickup value of the overcurrent model, and there is 
no response. In Fig. 12, a maximum cycle overload is applied 
where the current alternated between 1.4 and 0.4 pu every 450 
seconds. The cyclic load has an rms current of 1.03 pu current 
and does not overheat the motor. Also, the highest tempera-
ture during the cycle is short of the service factor limit. In Fig. 
13, the overcurrent model trips when subjected to the cyclic 
overload that does not overheat the motor.  

IX.  CONCLUSIONS 

1. The derivation by Grainger is the inadvertent implementa-
tion of an overcurrent relay with thermal reset, and imple-
ments an extremely inverse characteristic. 

2. Motor thermal limit curves are plots of the limiting tem-
perature of the rotor and stator expressed in units of I2t. 

3. Stator and rotor thermal first order models are the differen-
tial equations for heat rise in a conductor that calculates 
temperature rise in real time. 

4. Thermal limit curves and supporting motor data define the 
thermal models. 

5. The thermal model temperature is the square of the rms 
value of the cyclic current. 

6. The overcurrent model trips for cyclic overload that does 
not overheat the motor. 

7. Voltage and current monitored by a motor relay are used 
to calculate slip and the slip-dependent rotor resistance so 
that the protection of high-inertia drive motors is inherent. 
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XI.  APPENDIX A—THE FIRST ORDER THERMAL MODEL 

The first order thermal model is derived as follows: 

 Aw θθθ −=  (A1) 

where  θ is defined as the winding temperature rise 
θW above ambient temperature θA 

The rate of increase of the temperature is given by the equa-
tion expressing the thermal equilibrium. 

 Power Supplied – Losses 
dt
dθmC

dt
dθmC s

W
s ==  (A2) 

In this equation, Cs is the specific heat of the winding and m 
is the mass. The specific heat corresponds to the amount of 
energy needed to raise one kilogram of that material 
one degree centigrade. The losses or the quantity of heat 
transferred to the surrounding environment is expressed as: 

 
R
θ

R
θθLosses AW =

−
=  (A3) 

where R is the thermal resistance in °C/Watt. 

Equation (2) can be otherwise expressed as: 

 
dt
dθmC

R
θrI s

2 =−  (A4) 

or 

 θ
dt
dθRmCRrI s

2 +⋅=⋅  (A5) 

The mass m multiplied by the specific heat Cs is known as C, 
the thermal capacity of the system with units of joules/°C. It 
represents the amount of energy in joules required to raise the 
system temperature by one degree centigrade. 

The product of the thermal resistance R and the thermal ca-
pacitance C has units of seconds and represents the thermal 
time constant  

 sCmR ⋅⋅=τ  (A6) 

The fundamental equation (5) can be expressed in a simpler 
form: 

 
Rr
θ

dt
dθ

Rr
1RmCI s

2
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⎞
⎜
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 RmCs ⋅=τ  (A8) 

let 
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U
⋅
θ

=  (A9) 

and 
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d
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1

dt
dU θ

⋅
⋅

=  (A10) 

Therefore, the first order thermal model equation becomes 
the simple form: 

 U
dt
dUI2 +τ=  (A11) 

The solution of the first order equation is: 
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With initial current I0 
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When using (13) to calculate U over a small time increment ∆t, 
the exponentials can be replaced with the first two terms of the 
infinite series as follows: 
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Substituting (14) in (13) gives  

 ⎟
⎠

⎞
⎜
⎝

⎛
τ
∆

−⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
τ
∆

−−⋅= −
t1Ut11IU 1n

2
n  (A15) 

This incremental form of the equation is ideal for use in the 
processor for the continuous real-time calculation of tempera-
ture: 

 1n

2

n U∆t1∆tIU −⋅⎟
⎠

⎞
⎜
⎝

⎛
τ

−+
τ

=  (A16) 

where Un is the temperature expressed in units of I2t at 
sample n 

 Un-1 is the temperature expressed in units of I2t at 
the previous sample 

Electrical engineers find it helpful to visualize the thermal 
model as an electrical analog circuit. The first order equation of 
the thermal model has the same form as the equation express-
ing the voltage rise in an electrical RC circuit as shown in Fig. 
A1.  

 
Fig. A1 The Electrical Analog Circuit of the Thermal Model 

In the figure, the lower-case letters are used to identify the 
electrical parameters. In the circuit, the voltage V is the analog 
of the temperature U, the constant current i is numerically 
equal to the current squared. The thermal resistance R and 
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thermal capacitance C are the direct analogs of the electrical 
resistance r and the electrical capacitance c. 
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