Powertech Labs Inc. 12388 - 88th Avenue Surrey, British Columbia Canada V3W 7R7 Tel: (604)590-7500 Fax: (604)590-5347 www.powertech.bc.ca # CONTROLLER OSCILLATORY AND FAST TRANSIENT SWC TEST REPORT | Client: Schw | Schweitzer Engineering Laboratories Inc., 2440 NE Hopkins Court, Pullman, WA, 99163 USA | | | | |--|---|------------------------------|-------------------------------------|--| | Test Date: | October 15 th ,2015 | Project: | PL-27147 | | | Nameplate Data: Recloser Controller: Manufacturer: Model: Part No: Serial No.: Three-phase Reclosed Manufacturer: Type: Impulse level (BIL): Rated voltage: Rated current: Serial No.: | Schweitzer Engineering Labo
SEL-651RA
0651RA01XGAXAA1A111XI
1152650818
7: G & W Electric Company
Viper-S
150 kV _{peak}
38 kV _{rms}
800 A _{rms} continuous
2015-0821-0002 | | | | | Test Standard: | | 6.111.2: "Oscillato | ry and fast transients surge tests" | | | Test Witness: | Mark Feltis – Schweitzer Engineering Laboratories Inc., | | | | | Atmospheric Condition | Relative humidity 5 | 2.5 °C
7.7 %
53.5 mmHg | | | | Test Voltage: | Oscillatory - 2.5 kV _{peak} , Fast Transient – 4 kV _{peak} | | | | | Test Procedure: | The testing was in accordance with IEEE C37.90.1-2012. Test surges were applied to the control cable in common and transverse mode using an external coupling/decoupling network in accordance with Table 3 and 4 of IEEE C37.90.1. Signal and data circuits were tested using a capacitive clamp. The AC power supply was tested while connected to 120 Volts, 60 Hz supply for all tests. | | | | | Test Results: | The controller and recloser operated normally following the Oscillatory and Fast Transient Tests performed in accordance with the test procedures as per the above document. The controller complied with requirements of "IEEE C37.60-2012, Clause 6.111.2". | | | | | Remarks: | Viper-S voltage sensor board was modified prior to equipment successfully passing the test. | | | | Tested by: Reviewed by: Hamish Miller, EIT. Test Engineer, High Voltage Laboratory Alex Babakov, P. Eng. Test Engineer, High Voltage Laboratory This report shall not be reproduced except in full, without the written approval of Powertech Labs Inc. Project No.: PL-27147 ## **Fast Transient Waveform Validity Tests** (in accordance with IEEE Std C37.90.1-2012, Clause B.2) Performed before the Fast Transient Test Measuring system feed through test Generator Output voltage ____ 4____ kV Feed through voltage _____ V (pass if $\leq 1\%$) 2. Open circuit voltage waveform test Recorded waveforms - Figures 1 and 2. 3. Test Generator performance verification Test duration <u>293.6</u> ms (240 to 360 ms) (≥ 60 s) **Burst period Burst duration** 14.9 ms 60.0 s (12 to 18 ms) (2 to 3 kHz) Repetition rate Impulse duration 2.5 kHz ns (35 to 65 ns to 50% value) Rise time 62 ns 5.6 (3.6 to 4.4 kV when set to 4 kV) Peak voltage level (no load) 4.20 kV (3.5 to 6.5 ns – 10% to 90%) 40.6 Ω Output impedance $(40 \text{ to } 60 \Omega)$ 4. Test Pass X Test Fail _____ 0.8 µs Figure 2 ## **Fast Transient Waveform Validity Tests** (in accordance with IEEE Std C37.90.1-2012, Clause B.2) Performed after the Fast Transient Test 1. Measuring system feed through test Generator Output voltage ____ kV Feed through voltage _____11.6 V (pass if $\leq 1\%$) 2. Open circuit voltage waveform test Recorded waveforms - Figures 1 and 2. 3. Test Generator performance verification Test duration __60.0__ s (≥ 60 s) Burst period <u>282.2</u> ms (240 to360 ms) **Burst duration** 14.8 ms (12 to 18 ms) Repetition rate 2.6 kHz (2 to 3 kHz) ns Impulse duration 35.3 ns (35 to 65 ns to 50% value) Rise time (3.5 to 6.5 ns – 10% to 90%) Peak voltage level (no load) _____ 4.18 kV (3.6 to 4.4 kV when set to 4 kV) Output impedance 49.5 Ω 5.4 $(40 \text{ to } 60 \Omega)$ 4. Test Pass ____X Test Fail _____ ## **Oscillatory Waveform Validity Tests** (in accordance with IEEE Std C37.90.1-2012, Clause B.2) Performed before the Oscillatory SWC Test 1. Measuring system feed through test Generator Output voltage ____ 2.5___ kV 2. Open circuit voltage waveform test Recorded waveforms - Figures 1 and 2. 3. Test Generator performance verification Test duration 2.1 s (2 to 2.2 s) Repetition rate 8 bursts per period (6-10 bursts per 16.7 ms) Oscillation frequency 0.91 MHz (0.9 to 1.1 MHz) Waveform envelope decay ___5.1___ μs $(4 \text{ to } 6 \mu \text{s to } 50\%)$ Rise time of the first peak 80 ns (60 to 90 ns – 10% to 90%) Peak voltage level (no load) 2.25 kV (2.25 to 2.5 kV when set to 2.5 kV) Output impedance 184 Ω $(160 \text{ to } 240 \Omega)$ 4. Test Pass ____X_ Test Fail _____ 1 Figure 2 ## **Oscillatory Waveform Validity Tests** (in accordance with IEEE Std C37.90.1-2012, Clause B.2) Performed after the Oscillatory SWC Test 1. Measuring system feed through test Generator Output voltage ____2.5___ kV Feed through voltage _____ 14.7 V (pass ≤ 1%) 2. Open circuit voltage waveform test Recorded waveforms - Figures 1 and 2. 3. Test Generator performance verification Test duration 2.1 s (2 to 2.2 s) Repetition rate 9 bursts per period (6-10 bursts per 16.7 ms) Oscillation frequency 0.90 MHz (0.9 to 1.1 MHz) Waveform envelope decay <u>5.8</u> μs (4 to 6 μ s to 50%) Rise time of the first peak <u>90</u> ns (60 to 90 ns – 10% to 90%) Peak voltage level (no load) ___2.41___ kV (2.25 to 2.5 kV when set to 2.5 kV) Output impedance ___161___Ω $(160 \text{ to } 240 \Omega)$ 4. Test Pass X Test Fail Figure 1 Figure 2 Powertech Labs Inc. 12388 - 88th Avenue Surrey, British Columbia Canada V3W 7R7 Tel: (604)590-7500 Fax: (604)590-5347 www.powertech.bc.ca ### RECLOSER-CONTROLLER SIMULATED SURGE ARRESTER OPERATION TEST REPORT | Client: Schweitzer Engineering Laboratories Inc., 2440 NE Hopkins Court, Pullman, WA, 99163 USA | | | | | |--|--|------------------------------|---|--| | Test Date: | October 15 th & 16 th ,2015 | Project: | PL-27147 | | | Nameplate Data: Recloser Controller: Manufacturer: Model: Part No: Serial No.: | Schweitzer Engineering Labo
SEL-651RA
0651RA01XGAXAA1A111XB
1152650818 | | | | | Three-phase Recloser: Manufacturer: Type: Impulse level (BIL): Rated voltage: Rated current: Serial No.: | G & W Electric Company
Viper-S
150 kV _{peak}
38 kV _{rms}
800 A _{rms} continuous
2015-0821-0002 | 4 | | | | Test Standard: | IEEE Std C37.60-2012, Clause 6.111.3: "Simulated Surge Arrester Operation Test" | | | | | Test Witness: | Mark Feltis – Schweitzer Engineering Laboratories Inc., | | | | | Atmospheric Condition | | october 15 th , 2 | | | | | Relative humidity 57 | 2.5 °C
7.7 %
53.5 mmHg | 19.5 °C
45.3 %
750.0 mmHg | | | Nominal Test Voltage a | and Current: 120 kV _{peak} (150 k | (V _{peak} * 0.8), 6 | .0 kA _{peak} | | | Test Configurations Te | sted (in accordance with the ab | | | | | | 1 - 15 surges of positive polarity and 15 surges of negative polarity were applied to the source bushing with the recloser open. 2 - 15 surges of positive polarity and 15 surges of negative polarity were applied to the source bushing with the recloser closed. 3 - 15 surges of positive polarity and 15 surges of negative polarity were applied to the load bushing with the recloser closed. 4 - 15 surges of positive polarity and 15 surges of negative polarity were applied to a properly rated transformer with the recloser open. 5 - 15 surges of positive polarity and 15 surges of negative polarity were applied to a properly rated transformer with the recloser closed. | | | | | Test Results: | The controller and recloser Clause 6.111.3, Configuratio | complied with | the requirements of IEEE Std C37.60-2012, | | | Remarks: | Viper-S voltage sensor board was modified prior to equipment successfully passing the test. | | | | Tested by: Reviewed by: Hamish Miller, EIT. Project No.: PL-27147 Test Engineer, High Voltage Laboratory Alex Bábakov, P. Eng. Test Engineer, High Voltage Laboratory Page 1 of 1