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Edmund O. Schweitzer, III Daqing Hou
Schweitzer Engineering Labs. Schweitzer Engineering Labs.
Pullman, Washington Pullman, Washington

1. INTRODUCTION

Protective relays must filter their inputs to reject unwanted quantities and retain signal
quantities of interest.

Distance relays have especially critical filtering requirements, because they must make precise
measurements quickly, even with corruption from dc offsets, ccvt transients, travelling-wave
reflections, and other interference.

In this discussion, we first identify filtering requirements or criteria for different relays. We
then limit the discussion to relays needing precise measurements of the system-frequency
component of the signals, such as distance relays.

The next step is to review and conceive many different filtering methods which may meet the
filtering requirements.

Are some methods better than others?

Are some "good" ideas ill-founded in theory?

Can we find common ground between seemingly-disparate methods?
Are there guidelines to help us decide what works?

Does faster sampling guarantee faster protection?

We attempt to answer filtering questions through requirement-assessment, analysis, simulation
and examples.

We consider and compare CAL, cosine, Fourier, correlator, least-squares and Kalman filters.
We also examine the differences between finite and infinite impulse response filters.

2. FILTERING REQUIREMENTS FOR PROTECTIVE RELAYS

Filtering requirements depend on the protection principle and the application.

In travelling-wave relays, the power-system frequency components are interference, and the
transients are the information.

In almost all other relays, the system frequency components are the information, and
everything else interferes. Among the exceptions are relays using harmonic-restraint, and
peak-sensitive voltage relays, which may need to detect off-frequency events.



Because distance relays measure impedance, and because impedance is defined at a given
frequency, distance relay filters must save only the fundamental frequency.

Overcurrent relay filtering should preserve the fundamental and reject other components, for
two reasons. First, we model the behavior of the power system at the fundamental frequency
in our short-circuit programs. Second, relays must coordinate. If different relays measure
different power system current components, and if we coordinate them on the basis of their
performance at the fundamental frequency, there is no guarantee the relays will coordinate
under all conditions.

3. SIGNAL PROPERTIES IN FAULTED POWER SYSTEMS

When the resistance-inductance behavior of the power system dominates, the voltages and
currents are, as usual, sinusoids with exponentially-decaying dc offsets. The offsets can
severely affect the currents, but seldom importantly affect the voltages.

Reflections on longer lines produce relatively high-frequency oscillations. A wavelength at 60
Hz is about 3100 miles; a quarter-wave is 775 miles. Therefore, lines have to be relatively
long before the frequency of the reflections encroach on the power-system frequency. This is
fortunate, because the frequency difference makes filtering easy.

Nonlinear loads, power transformers, and instrument transformers can produce harmonics.

Capacitive series compensation introduces subsystem frequency transients. A rough calcula-
tion for the subsystem frequency is the square root of the fraction of system compensation.
So, for 50% compensation (i.e., X, = 1/2 X| in the faulted loop), the subsystem oscillation
is around 70%. This is very close to the system frequency, and presents a significant filtering
problem.

Capacitive-coupled voltage transformers also produce low-frequency transients. The over-
damped nature of the transients makes them resemble dc offset.

Given these signal and "noise" properties, we propose filtering requirements and philosophy
for distance relays, and other relays which require accurate representation of the system-
frequency components.

4. FILTER DESIGN CHARACTERISTICS

The filter must have certain characteristics, no matter how we build it: analog, digital,
electromechanical, or some combination.

What are the characteristics?

1. Bandpass response, about the system frequency, because all other components are of no
interest.

2. Dc and ramp rejection to guarantee decaying-exponentials are filtered out.

3. Harmonic attenuation or rejection to limit effects of nonlinearities.

4. Reasonable bandwidth for fast response.
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5. Good transient behavior.
6. Simple to design, build, and manufacture.

Precisely choosing filtering characteristics, based on the relay requirements, is our best
guarantee that our filter design will be successful in the laboratory and in the field.

It would be a serious mistake to simply select a filtering concept and "prove" it in EMTP and
model power systems tests. If we do not carefully study the requirements and the characteris-
tics, then there is much greater likelihood that some day, some system will present the relay
with unforeseen conditions, not evaluated and addressed in systems tests.

How Should We Synthesize and Implement the Filtering?

Ultimately, we wish to build the filter using analog and/or digital electronic techniques.
Relay requirements of polarizing memory, and system requirements of fault locating and
event recording essentially insist on a digital sampled data-system design.

A digital design gives us a choice between finite and infinite impulse response filtering,
whereas analog filters practically limit us to infinite impulse responses.

The outputs of finite impulse response (FIR) filters depend on a finite-time-history of the
input; whereas outputs of infinite impulse response (IIR) filters depend on all prior history of
the input.

FIR filters subjectively make good sense for protection for two reasons.

1. FIR filters quickly forget the prefault condition, and work on analyzing the faulted
system. Once the filters fill up with fault data, their phasor estimates of the faulted
voltage or current are no longer corrupted with prefault data.

2. FIR filters naturally have zeros in their frequency responses. It is relatively easy to put
them where we want them, e.g., at dc and harmonics.

Figures 4.1 and 4.2 compare an IIR filter to an FIR filter. Both are, for simplicity, lowpass
filters. The impulse response of the IIR filter is samples of a decaying exponential, and
therefore lasts forever. That is why the present output depends on all prior history of the
input.
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Figure 4.2 FIR Lowpass Filter Yi=[X+...+x,,)/8

We choose an FIR filter such that its low frequency response looks similar to the IIR filter.
However, the FIR impulse response clearly includes only a finite time history of the input.
The output depends only on the most recent eight samples.

The complete frequency domain characteristics are different. The IIR filter is sharper in the

low frequency region (not always an advantage); and the FIR filter has zeros. In practice, we
can put those zeros to work to notch out harmonics.
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Impulse Response Effects on Frequency Response

The shorter we make the impulse response, the faster the relay becomes. What happens to
other performance features? Figure 4.3 shows the frequency responses for three cosine

filters: half-cycle, one-cycle and twocycle. We choose a 1/2, 1, 2 sequence to show clearly
the difference.
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Figure 4.3 Frequency Responses of Half-, One- and Two-
Cycle Window Cosine Filters

The longer impulse responses have narrower frequency responses. The one-cycle cosine filter
has zeros at dc and at the harmonics of 60 Hz. We lose rejection of the even harmonics when
we reduce the filter to half-cycle. The time-response graph of the half-cycle cosine filter in
Figure 4.4 shows the penalty for increasing speed: poor transient response. The half-cycle

filter is not a double-differentiator, and has poor ability to reject exponentials. The imped-
ance-plane trajectory spirals, indicating severe overreaching.
The two-cycle window is unnecessarily slower (Figure 4.6) compared with the one-cycle
window (Figure 4.5), and its transient performance is insignificantly better.

These impedance time-responses come from filter simulations which we shall discuss in the
next section.
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How Does Sampling Rate Affect Relay Operating Time?

Sampling faster means shorter operating times, but the improvement is tempered by filter
delay. Figure 4.7 plots operating times for a certain fault condition, as a function of the
sampling rate. For each value of the sampling rate, we have optimized the digital and analog
filter pair. Increasing the rate from four to eight samples/cycle decreases the operating time
by about 1/8 cycle, at the cost of double computations. Doubling the sampling rate again
yields only a reduction of about 1/16 cycle, again with double the computations. Doubling
from 16 to 32 samples/cycle speeds up the operation by only 1/32 of a cycle.
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For remote faults, the operating times are all longer; but the speedup times remain about the
same.

Why is the speedup so minor? The reason is that the digital filters are all based on a one-
cycle window. The speedup comes mainly from reduced analog lowpass filter delay and
reduced processing latency.

5. FILTER EVALUATION

The Power System Model

We shall evaluate filters from two aspects: their steady-state and transient performance.

When the filtering window of a filter covers partially prefault and partially postfault data, the
filter is in a transient period. After its filtering window includes all postfault data, the filter is
then in a postfault steady state.

The frequency response, or Bode magnitude plot, of a filter is an excellent tool to study the
filter’s steady-state performance. We can visualize the filter’s frequency characteristics: what
signal gets passed? what is blocked? However, the frequency response represents the steady-
state behavior of filters. Also, only time-invariant filters, whose filter coefficients do not
change with time, have frequency response plots. The Kalman filter, for example, does not
have frequency response plots.

To investigate the filter transient performance, like overreaching and settling time, and to
study time-variant filters, we need time-domain filter simulations. The filter simulation here
includes generating or collecting fault voltages and currents, passing them through filters, and
recording the evolution of the impedances or other quantities calculated from filtered data.
Filter simulations confirm the filter steady-state properties as well.

We want filter simulations to be as simple and basic as possible, so we can get useful and
clear results efficiently. We also want the simulation environment to be controllable, so that
different desired filter properties can be unveiled clearly and separated.

Fault data generation and collection are one of the key elements of simulations. For this
purpose, we set up a one-phase power system model, as shown in Figure 5.1, to generate
fault voltages and currents. White noise and harmonics are options one can choose to
contaminate generated fault data. We use the white noise to emulate the high frequency
noises caused by unmodeled distributed capacitance and other sources. Harmonics could
result from nonlinear devices in a power network.
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Figure 5.1 Power System Model

The simple power system model helps us probe the filter’s ability to reject exponentially-
decaying dc offsets, high frequency noise and harmonics. It obviously does not cover all
possibilities arising from a real, complicated power network. The simulations are later
complemented by EMTP testing of complete schemes.

One set of voltage and current waveforms generated from the power system model is shown
in Figure 5.2. The fault is at the end of the line with no fault resistance. An inception angle
of zero gives full dc offset. The postfault data are corrupted by adding white noise with a
variance of 0.1, plus 20% second, 15% third and 10% fifth harmonics. The variance of the
white noise and the magnitudes of harmonics are in terms of percentage of the postfault
voltage and current magnitudes.
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Filter Evaluation System

The model system used to evaluate filters is shown in Figure 5.3. It includes an analog
lowpass filter, analog to digital conversion (A/D), a digital filter and impedance calculations.
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Analog/Digital Impedance
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Current Analog > re Digital
LPF Filter limag

Figure 5.3 System for Evaluating Analog and Digital Filters

The impedance is a complex value. Its calculation requires the phasors, or real and imaginary
parts, of voltages and currents. Phasors can be obtained by two different methods. One is
through an orthogonal filter pair, such as the sine and cosine Fourier filter. When filtering a
signal, the filter pair simultaneously gives two filtered outputs with a 90-degree phase shift,
which thus constitute the real and imaginary parts of a phasor. Alternatively, the present and
the quarter—cycle earlier outputs of one filter are 90 degrees apart. One filter plus a quarter-
cycle delay is thus another way to get phasors.

We might expect that the orthogonal filter pair method should be a quarter-cycle faster than
the filter plus delay method. However, as we shall see in the next section, this is not
necessarily true. The orthogonality condition limits the choices in selecting filter pairs. A
filter chosen unoptimally introduces bad transient response in the impedance calculation and
often slows down trip decisions. The first method filters a quantity twice to get a phasor. It
can cost twice as many calculations.

6. COMPARISON OF EVALUATED DIGITAL FILTERS

Let us recall our filter design objectives. We want a digital filter which rejects both dc and
ramps (these two are the main ingredients of exponentially-decaying dc offsets), rejects all
harmonics, has a bandpass filter characteristic, and has fast, well-behaved transient responses.

FIR filters with less than a one-cycle window cannot reject all harmonics. We have seen
some effects on the frequency response when shortening the cosine filter in Section Four.
Even worse, the lower harmonics (second and third) are usually the first ones to be sacrificed
when shortening the window. For this reason, we limit our discussions only to one-cycle-
window FIR filters. We shall use a sampling rate of 16 samples per cycle in the following.
The analog lowpass filter is a second order Butterworth with a cutoff frequency of 360 Hz.

We evaluate and compare filters in the order: CAL, cosine, Fourier, IIR, correlators, least-
squares, and Kalman filters.
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1. CAL _ Cosine Filters

The CAL filter is the simplest filter we evaluated. Its coefficients are +1. The filtering
process uses only addition and subtraction. This eliminates time-consuming multiplications.
It is therefore the most computationally-efficient filter. The CAL filter is a double differenti-
ator. It can nicely reject dc and ramp components of inputs and therefore the exponentially-
decaying dc offset. From the filter frequency response, shown in Figure 6.1, we see that the
filter does not reject odd harmonics. The analog lowpass filter should be designed to help the
CAL filter reject harmonics.
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Figure 6.1 CAL Filter

The cosine filter has its coefficients evenly sampled from a cycle of a cosine waveform. It is
similar to the CAL filter in terms of the double differentiator property which is so essential to
effectively reject exponentially-decaying dc offsets. From the cosine filter’s frequency

response shown in Figure 6.2, we see that the filter rejects exactly all harmonics and has a
bandpass filtering property.
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Figure 6.2 Cosine and Sine Filters

The dc, fundamental and odd-harmonic performances of the CAL and cosine filters are
essentially the same: excellent.

One impedance plot of the cosine filter is given in Figure 6.3.
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The imaginary part of voltage or current phasors comes from a quarter-cycle delayed filter
output. From the start of a fault, it takes a cycle for the fault to fill the filter, and another
quarter-cycle delay to complete the quadrature component. The worst-case filter speed is thus
one and one-quarter cycles.

2. Fourier Filter

The cosine filter is so promising that we investigated ways to improve it. One natural thought
is to eliminate the quarter-cycle delay needed to get the quadrature component. This directs
us to a filter orthogonal to the cosine filter, which is the sine filter. The frequency response
of the sine filter is shown together with that of the cosine filter in Figure 6.2. The response
looks like the cosine filter pushed toward low frequencies. The sine filter has better high
frequency attenuation and the same total harmonic rejection. However, we pay for this better
high frequency attenuation by sacrificing ramp rejection (double differentiation) capability.
Because it lacks ramp rejection, the Fourier filter pair has poor transient response.

Is the Fourier filter a quartercycle faster than the cosine filter? Let us look at what happens
when there are dc offsets. Figure 6.4 shows the impedance response of the Fourier filter with
full dc offset. The imaginary part of the postfault impedance is one ohm. The zoomed
version of the impedance plot (Figure 6.5) shows that the postfault impedance circles around
the postfault point, and takes a long time to settle. After 1.75 cycles, the Fourier filter still
has ten percent overreaching and underreaching. The cosine filter, however, gives less than
two percent impedance variation after one and one-quarter cycles. Therefore, the cosine filter
is faster and more accurate than the Fourier filter, whenever dc offsets accompany fault
currents.
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Figure 6.5 Comparison of Cosine and Fourier Filters

Among all possible fault incident angles from O to 360 degrees, there are exactly two points
where a fault does not cause any dc offset. From our simulations, we have seen worse
Fourier filter transient overreaching and underreaching if the fault incident angle is more than
10 degrees from those two points. That is to say, assuming random, uniform fault angle
incidence, the cosine filter performs better than the Fourier filter 8 out of 9 times!

. IIR Filter

The essential difference between the IIR filters and the FIR filter is that the IIR filter outputs
depend on entire input history. The memory of this type of filter lasts forever, as is implied
by the IIR name. This property conflicts with the basic requirement of distance relays.
When a fault happens, we want the filter window to cover the postfault data as quickly as
possible.

One IIR filter design sample is given in Figures 6.6 and 6.7. This is a second-order elliptical
bandpass filter. The filter’s passband is from 30 to 75 Hz with 0.5 dB ripple. Its stop bands
have minimum 30 dB attenuation. We choose these parameters to best compromise the dc
and second harmonic rejection, passband ripple and overall bandwidth.
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Figure 6.6 An IIR Bandpass Filter
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Figure 6.7 Impedance Plot of the IIR Filter

The frequency response has a very attractive passband around the fundamental. However, the
impedance response is sluggish from the prefault to postfault points. This slow response is no
surprise since we know that a narrow band in frequency corresponds a long impulse response
in time domain. Any attempt to widen the passband to reduce response time introduces more
second harmonic.
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4. Correlators

A correlator is shown in Figure 6.8. This configuration reminds us of the mixer often used in
radio communication equipment. The filtering process wraps filter coefficients along the
input samples, throwing out the oldest product and requiring only one new multiplication.
Because of the coefficient wrapping, the filter frequency response is not fixed. The response
changes as the filtering goes along. As we can see from the example, if the filter now is a
cosine filter, then the filter (shifted by a quarter-cycle) becomes a sine filter for the next
filtering point. The correlator output is dc (a stationary phasor) for a pure fundamental sine
wave input, because the frequency components of an input signal are shifted higher and lower
by the mixing frequency after the mixing. A lowpass filter is necessary to filter out the
second harmonic produced by mixing the fundamental sine input, and to filter out all other
contamination on the input and shifted by the mixer. The overall correlator filter performance
is mainly determined by the lowpass filter following the mixer.
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Figure 6.8 Correlation Filtering

To compare the correlation filtering with a convolution filtering, we present a convolution
filtering process in Figure 6.9 with a fundamental frequency sine wave input, a cosine filter
and implied 4-sample per cycle sampling rate. Two important observations about convolu-
tions are that a convolution is a process of moving fixed filter coefficients along the input
samples; and the filter output is a sinusoidal wave with the fundamental frequency.
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Figure 6.9 Convolution Filtering

There are at least two correlator filters which some manufacturers are currently using in their
relays. The filters are all referred to as recursive Fourier filters in the original literature.
The name is quite confusing, since they are conceptually different from the Fourier filter.
They may also perform very differently from the Fourier filter, as we shall see.

The lowpass filter of one correlator filter in use is an IIR filter. Its frequency responses for
different time constants fau are shown in Figure 6.10. A larger fau gives longer memory, but
desired narrow frequency passband. For any rau shown, this correlator filter cannot zero out
any harmonics or dc offset. It has especially poor rejection of dc and the second harmonic,
reflected by the less-than-half attenuation at the fundamental frequency point of the lowpass
filter frequency response. The problem readily shows up in the simulation plot of Figure
6.11.
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Figure 6.11 Impedance Plot of IIR Correlator Filter

The second correlator filter uses a full-cycle averaging FIR lowpass filter. It has much better
performance because of the desired frequency response of the LPF shown in Figure 6.12. It
rejects all harmonics as the Fourier filter does. The overall filter rejects dc but not ramps.
The lack of ramp rejection can be understood since the filter alternates from a cosine filter to
a sine filter every quarter-cycle, and the sine filter does not reject ramp. The filter shows
transient problems when an input contains an exponentially-decayed dc offset, as expected.
Actually, the filter performance is very close to the Fourier filter which is also unsatisfying.
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5. Least-Squares Filters

Assume that we already know what components can be involved in a signal. The only
unknowns are then the magnitudes of these components. The components might be dc, ramp,

fundamental cosine and sine, etc. Everything else in the signal is modeled as a disturbance
term.

Our purpose here is to estimate the component magnitudes from a finite span of signal
measurements in some optimum way. If the measurements can be completely explained by
the chosen components, the disturbance term should be small. We can find the component
magnitudes to minimize the square error of the fitting.

If we use m measurement points in the optimization process, we then get FIR filters with a
window length of m. The filter result is the optimal representation of each known component
during an m-point data span.

When we fit an input with just a cosine using a one-cycle window, we obtain a cosine filter.
In addition, if we include the sine, we obtain the Fourier filter pair. We still obtain the
cosine and sine filters, even if we further include dc and their harmonics: we just get
additional filters for dc and the harmonics. This results from the orthogonality property of
the optimization problem.

One purported advantage of the least-squares filter is its flexibility. We can fit any known
components which we believe the input has. However, care must be taken when doing this
since an inclusion of one ’unnatural’ function will jeopardize the overall performance on the
cosine and sine filters. For example, let us try to reduce the bump between the second and
third harmonics on the cosine filter frequency response of Figure 6.2. If we include a cosine
function of 2.5 times the fundamental frequency, we can put a zero at the corresponding point

19



of the cosine frequency response, since that frequency has been extracted out by this new
member inside the fitting group. Figure 6.13 shows what happens to the frequency response
of the filter. We certainly sacrifice higher-frequency rejection by adding a zero at 2.5, and
we should be deeply concerned about a filter having an impulse response which does not
resemble our signal.
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Fracuencv Resnonse

Gain

Frequency (harmonics)

Figure 6.13 One Least-Squares Filter

6. Kalman (Recursive 1 east-Squares) filter

The so-called Kalman filter proposed for relay designs is different from the conventional
Kalman filtering concept in two ways:

It does not model the dynamics of a power system (it models only system voltage
and current outputs);

2. When a fault occurs, the filter needs to be re-initialized to adapt to a totally different
power system.

The filter is a generalization of the least-squares filters we just discussed. In least-squares
filters, we fit a signal to known components using only m measurement points. If system
dynamics do not change, we should expect a more accurate fit by using all measurement
history. Since no computer can store all incoming data, it is necessary to put the least-squares
algorithm in a recursive form so that only the new input information is used during a
computation interval.

In the prefault steady state, the voltage and current do not provide much new information, if
any. The Kalman filter thus places very little importance on the input, and relies heavily on
its memory. The filter is equivalent to an IIR filter with a narrow passband and long impulse
response. Because of this, the scheme needs a fault detector to wake up the filter when there
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is a fault. This is done by increasing the estimation variance matrix to inform the filter that
its estimation is highly inaccurate.

In our opinion, the need for a fault detector to make the filter work is a big drawback of the
Kalman filter. The fault detector needs a threshold, which is compared with some quantity
(usually the filter prediction error). The threshold is highly system and fault dependent. 1t is
not practical to choose one fixed threshold for all unforeseen fault situations. The future
development of power systems will definitely include more harmonic and noise generating
components. In our simulation, we have seen a compromise in the choice of the threshold. If
the threshold is a little bit high, then the filter responds to remote and high impedance faults
very slowly (Figure 6.14), because the fault detector did not detect the fault. On the other
hand, if the threshold is low, then a low percentage of unmodeled harmonics could trigger a
false fault detection and put the filter in a transient state (Figure 6.15).
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Figure 6.14 Kalman Filter with Threshold 0.10
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Figure 6.15 Kalman Filter with Threshold 0.08

In its signal model, the Kalman filter needs to include all possible interfering components to
eliminate their effects on the desired filter output. Suppose that an input has a component
which a Kalman filter does not model. Then the filter will try to squeeze the component into
the fundamental and other components modeled, when it should be trying to reject the
component. This definitely results in inaccurate filtering. The filter modeling dc, second and
third harmonics is already 13 times more complex than the cosine filter in terms of multiplica-
tion and addition operations. To model all foreseen signals into the filter states will certainly
make the filter too bulky to use.

In summary, there are two major failings of the Kalman filtering approach, as it has been
applied to protective relaying:

1. The filter treats faults as "this cannot be happening," because it attempts to
remember the unfaulted state.

2. The filter lets unmodeled signal components easily affect its output.
1. Differential Equations

Differential equation approaches fit voltages and currents directly to a simple RL transmission
line time-domain model. R and L are calculated from samples of the voltage, current and the
derivative approximation of the current.

The RL model can only explain the components of signal caused by the model, such as dc
offset. If the signals are contaminated by anything else, the algorithm performs poorly. To
use this method successfully, it is obvious that we need to filter these unexpected components
out before the signals are used to fit the model. Once we design adequate filters to make the
differential equation method work, we essentially have a cosine filter and a phase shifter
(e.g., quarter-cycle delay).
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7. CONCLUSION

1. Fault currents and voltages used in protective relays are contaminated with exponentially-
decaying dc offsets, harmonics and other interference. For protective relays which rely on
precise fundamental quantities, we need to extract postfault voltages and currents as quickly
and as accurately as possible. An ideal filter for such relays is a narrow bandpass filter.

2. FIR filters have advantages over IIR filters. FIR filters have zeros naturally in their
frequency response. We can arrange these zeros to reject harmonics exactly. An FIR filter
uses finite samples of an input for its output. Once the fault inception point propagates
through the filtering window, its output is no longer corrupted with prefault data. The
outputs of IIR filters, however, rely on the entire history of an input. This is contrary to the
basic requirement of protective relays.

3. An FIR filter with a less than one-cycle window cannot reject all harmonics. The filter is
usually more prone to low harmonics.

4. The one-cycle cosine filter is the best filter we evaluated. It rejects exponentially-decaying
dc offsets, rejects all harmonics, comes close to the desired bandpass filtering, and has good
transient response. The cosine filter outperforms the Fourier filter, when dc offsets are
present. This is clearly shown in Figure 6.5. .

5. The advantage of higher sampling rates on the relay speed diminishes, when a filtering
window is fixed. The improvement in speed comes from decreasing the analog lowpass filter
delay and computational latency.
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