

SEL-2245-2 Analog Input Module

The SEL-2245-2 provides dc analog inputs for the SEL Axion[®]. Within an Axion system, install as many as sixteen SEL-2245-2 modules in any combination you want.

Front Panel

Figure 1 SEL-2245-2 DC Analog Input Module

Mechanical Installation

Each SEL-2242 chassis/backplane has four or ten slots, labeled A–J. Slots B–J support the SEL-2245-2 modules.

To install an SEL-2245-2 module, tip the top of the module away from the chassis, align the notch on the bottom of the module with the slot you want on the chassis, and place the module on the bottom lip of the chassis as *Figure 2* illustrates. The module is aligned properly when it rests entirely on the lip of the chassis.

Figure 2 Proper Module Placement

Next, carefully rotate the module into the chassis, making sure that the alignment tab fits into the corresponding slot at the top of the chassis (refer to *Figure 3*). Finally, press the module firmly into the chassis and tighten the chassis retaining screw.

Figure 3 Final Module Alignment

Input Connections

The SEL-2245-2 dc analog inputs include a plus sign to indicate the positive convention. Refer to *Specifications* for analog input ratings and to *Figure 1* for terminal assignments. You can configure inputs to measure ± 20 mA, ± 2 mA, or ± 10 V signals. Configure inputs by adding a Fieldbus I/O connection for each module in ACSELERATOR RTAC® SEL-5033 Software. See the EtherCAT® portion in *Section 2: Communications* in the SEL-5033 software manual for details.

LED Indicators

The LEDs labeled **ENABLED** and **ALARM** are related to EtherCAT network operation. The green **ENABLED** LED illuminates when the module is operating normally on the network. The **ALARM** LED illuminates during network initialization or when there is a problem with the network. Refer to *Section 3: Testing and Troubleshooting* in the *SEL-2240 Instruction Manual* for more information.

Specifications

Compliance

Designed and manufactured under an ISO 9001 certified quality management system

UL Listed to U.S. and Canadian safety standards (File NRAQ, NRAQ7 per UL508, and C22.2 No. 14)

CE Mark UKCA Mark

Product Standards

IEC 60255-26:2013 - Relays and Protection Equipment: EMC IEC 60255-27:2014 - Relays and Protection Equipment: Safety IEC 60825-2:2004 +A1:2007 +A2:2010 for fiber-optic communications IEC 61850-3:2013 - Comm Systems for Power Utility Automation

General

Operating and Storage Temperature Range

 -40° to $+85^{\circ}$ C (-40° to $+185^{\circ}$ F)

Units should be stored and transported in their original packaging.

Note: Operating temperature evaluated for UL ambient 0° to 40°C.

Operating Environment

Pollution Degree: 2 Overvoltage Category: II Insulation Class:

Relative Humidity: 5-95%, noncondensing

Maximum Altitude: Vibration, Earth Tremors: Class 1

DC Transducer (Analog) Inputs (SEL-2245-2)

Input Impedance

 $200~\Omega$ for $\pm 20~mA$ Current Mode:

5000 Ω for ±2 mA

Voltage Mode: $10 \, \mathrm{M}\Omega$ Input Range (Maximum):

(transducers: 4-20 mA or 0-20 mA

typical) ±2 mA

(transducers: 0-1 mA or 0-2 mA typical)

(transducers: 0-5 V or 0-10 V typical)

Sampling Rate: 1 ksps

Anti-Alias Filter

Corner Frequency: 330 Hz

Rolloff: 20 dBV per decade

Digital Filter

Corner Frequency: Filter A: 16 Hz

Filter B: 10 Hz Filter C: 0.2 Hz

50 Hz Rejection: Filter A: > 30 dB

Filter B: > 50 dB Filter C: > 70 dB

60 Hz Rejection: Filter A: > 60 dB

Filter B: > 70 dB Filter C: > 70 dB

Step Response

No Filter 3 ms (10-90% response) Filter A: 23 ms (10-90% response) Filter B: 35 ms (10-90% response) Filter C: 700 ms (10-90% response)

Common Mode Range

±35 Vdc between inputs ±250 Vdc all inputs to chassis

Isolation

500 Vac between separate inputs 2000 Vac all inputs to chassis

Accuracy at 25°C

ADC: 16 bit

Voltage Inputs (±10 V): 0.25% of full scale typical

> 0.05% with field calibration 2% of full-scale maximum

High Current Inputs (±20 mA):

0.5% of full scale typical 0.1% with field calibration

2% of full-scale maximum

Low Current Inputs $(\pm 2 \text{ mA})$:

0.5% of full scale typical 0.1% with field calibration 4% of full-scale maximum

Accuracy Variation With Temperature

Inputs: ±0.015% per °C of full scale

 $(\pm 20 \text{ mÅ}, \pm 2 \text{ mA}, \text{ or } \pm 10 \text{ V})$

ADC: ±0.004% per °C

Triggered Waveform Recording

Sampling Rate:

Record Duration: 0.1 second increments from 0.5 s to 144 s 0.05 s minimum to a maximum of (record Record Pretrigger

length minus 0.05) s

Waveform File Format: COMTRADE (IEEE C37.111-1999

compliant)

Type Tests

Environmental Tests

Damp Heat, Cyclic:

Enclosure Protection: IEC 60529:2001 + CRGD:2003

IP3X excluding the terminal blocks

IEC 60255-21-1:1988 Vibration Resistance:

> Vibration Endurance, Severity: Class 2 Vibration Response, Severity: Class 2

Shock Resistance: IEC 60255-21-2:1988

Bump Withstand, Severity: Class 1 Shock Withstand, Severity: Class 1 Shock Response, Severity: Class 2

IEC 60255-21-3:1993 Seismic:

Quake Response, Severity: Class 2

Cold, Operational and IEC 60068-2-1:2007 Cold, Storage: -40°C, 16 hours Dry Heat, Operational IEC 60068-2-2:2007 and Dry Heat, Storage: +85°C, 16 hours

25° to 55°C, 6 cycles, 95% relative

IEC 60068-2-30:2005 humidity

Damp Heat, Steady State: IEC 60068-2-78:2012

93% RH and 55°C for 10 days

IEC 60068-2-14:2009 Change of Temperature:

1 deg. per minute, -40° and +85°C,

5 cycles

Dielectric Strength and Impulse Tests

IIEC 60255-5:2000 Impulse:

IEEE C37.90-2005 Severity Level:

0.5 Joule, 2 kV channel to chassis 0.5 Joule, 500 V channel to channel

Dielectric (HiPot): IEC 60255-5:2000

IEEE C37.90-2005 Severity Level:

2000 Vac channel to chassis for

1 minute

500 Vac channel to channel for 1 minute

RFI and Interference Tests

EMC Immunity

Waves:

Low-level analog dc signals were tested with shielded twisted pair for optimum noise rejection.

Slow Damped Oscillatory IEC 61000-4-18:2006 + A1:2010 Severity Level: 2.5 kV common mode 1 kV differential mode

Electrostatic Discharge Immunity:

IEEE C37.90.3-2001 IEC 60255-22-2:2008 IEC 61000-4-2:2008

Severity Level: 8 kV contact discharge

15 kV air discharge (Filter A applied)

(Command and Control: all 16 input returns connected together) (Measurement: all 16 inputs may be isolated from each other)

IEEE C37.90.2-2004 Radiated RF Immunity:

Severity Level: 35 V/m IEC 61000-4-3:2008 IEC 60255-22-3:2007 Severity Level: 10 V/m

Digital Radio Telephone ENV 50204:1995

RF Immunity:

Severity Level:

10 V/m at 900 MHz and 1.89 GHz

Conducted RF Immunity: IEC 60255-22-6:2001

IEC 61000-4-6:2008 Severity Level: 10 Vrms

IEC 60255-22-5:2008 Surge Immunity:

IEC 61000-4-5:2005

Severity Level: 1 kV Line to Line,

2 kV Line to Earth (8 ms filter voltage mode, 6 ms filter high-current mode, 4 ms filter low-current mode)

Fast Transient, Burst

Immunity:

IEC 60255-22-4:2008 IEC 61000-4-4:2011

Severity Level: Class A: 4 kV, 5 kHz; 2 kV, 5 kHz on communications ports Magnetic Field IEC 61000-4-8:2009

Immunity: Severity Level: 1000 A/m for 3 seconds,

> 100 A/m for 1 minute IEC 61000-4-9:2001 Severity Level: 1000 A/m IEC 61000-4-10:2001 Severity Level: 100 A/m

Surge Withstand IEEE C37.90.1-2002

Severity Level: 2.5 kV Oscillatory Capability Immunity:

4.0 kV Fast Transient (Filter A applied)

Oscillatory Waves IEC 61000-4-12:2006

Severity Level: Ring Wave: 2 kV Immunity:

common, 1.0 kV differential Oscillatory: 2.5 kV common, 1.0 kV differential (Filter A applied)

IEC 61000-4-16:2002 Common Mode Frequency: 0 to 150 Hz Disturbance Immunity:

Severity Level: Level 4, Segment 4: 30 Vrms open-circuit, 15 to 150 kHz

Emissions

Radiated and Conducted IEC 60255-25:2000 Emissions:

Severity Level: Class A

Canada ICES-001 (A) / NMB-001 (A)

© 2013-2023 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit selinc.com or contact your customer service representative.

SCHWEITZER ENGINEERING LABORATORIES, INC.

2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A. Tel: +1.509.332.1890 • Fax: +1.509.332.7990 selinc.com · info@selinc.com

SEL-2245-2 Data Sheet Date Code 20230119